COntinuous Mesoscale Ensemble Prediction System @ DMI

Henrik Feddersen, Xiaohua Yang, Kai Sattler, Bent Hansen Sass

Why short-range ensemble forecasting?

- Quantify uncertainty
 - Precipitation
 - Cloud cover
 - Cloud base
 - Visibility/fog
 - ...
- Predict high-impact weather
 - Cloud bursts/thunderstorms
 - Heavy snowfall/snowstorms
 - (Wind storms)

Sources of forecast uncertainty

- Initial conditions
- Lateral boundary conditions
- Forecast model

Present short-range DMI-EPS

	E05-EPS	Commence and the second
Forecast model(s)	HIRLAM	
Resolution	0.05°, 40 vertical levels	
Members	25 (2 control, 23 perturbed)	
Update period	6 hr (all members)	
Initial and lateral boundary conditions	1 control 6 perturbations (SLAF)	
Model perturbations	2 cloud schemes (STRACO + Kain/Fritsch- Rasch/Kristjansson), stochastic physics (SPPT)	

Short-range DMI-EPS

	E05-EPS	COMEPS
Forecast model(s)	HIRLAM	HARMONIE-AROME HIRLAM
Resolution	0.05°, 40 vertical levels	2.5 km, 65 vertical levels 0.03°, 65 vertical levels
Members	25 (2 control, 23 perturbed)	24 (12 pert. HARMONIE + 12 pert. HIRLAM)
Forecast length	54 hr	42 hr
Update period	6 hr (all members)	1 hr (4 members)
Initial and lateral boundary conditions	1 control 6 perturbations (SLAF)	12 perturbations (SLAF)
Model perturbations	2 cloud schemes (STRACO + Kain/Fritsch- Rasch/Kristjansson), stochastic physics (SPPT)	HIRLAM: As E05-EPS HARMONIE: Turbulence, shallow convection, subgrid scale orography,

COMEPS domains

Hirlam-H03 (0.03°)

Harmonie-DKA (2.5 km)

North Sea wave model

Sensitivity to initial conditions

Edward Lorenz (1917-2008)

Ensemble prediction

Few initial condition samples that best span the phase space

Initial condition perturbations

- Use ECMWF ensemble members
- Monte Carlo method/random sampling
- Systematic perturbations of control analysis
 - Singular vectors
 - Breeding method
 - Scaled Lagged Average Forecast (SLAF)
 - Ensemble Kalman filtering methods

SLAF

• Use forecast errors as perturbations

-
$$IC_T^{(1,2)} = A_T \pm \alpha_1 (F_{T-12h}(t=12h) - F_{T-6}(t=6h))$$

- $IC_T^{(3,4)} = A_T \pm \alpha_2 (F_{T-18h}(t=18h) - F_{T-6}(t=6h))$

 A_T = Control analysis at time T F_T = ECMWF forecast at time T $\alpha_1, ..., \alpha_6$ = scaling parameters

- $\ \mathsf{IC}_{\mathsf{T}^{(11,12)}} = \mathsf{A}_{\mathsf{T}} \pm \alpha_6 \ (\mathsf{F}_{\mathsf{T}\text{-}42h}(\mathsf{t}\text{=}42h) \mathsf{F}_{\mathsf{T}\text{-}6}(\mathsf{t}\text{=}6h) \)$
- Time shift to perturb lateral boundaries
- Pros

- ...

- Forecast error ~ uncertainty
- Simple
- Cons
 - Number of perturbations is limited
 - No optimization regarding sampling of phase space

Importance of lateral boundary perturbations

Jure Cedilnik and Nedjeljka Zagar, ALADIN Workshop/HIRLAM All Staff Meeting 2017:

For forecast lengths > ~15h lateral boundary perturbations contribute more to the ensemble spread than initial condition perturbations!

Sampling model uncertainty

- Multi-model ensemble
 - Special case: "Poor man's ensemble" where the ensemble is a collection of available deterministic forecasts
- Multi-physics ensemble
- Stochastic physics
 - Stochastic perturbation of physics tendencies (SPPT)
 - Stochastic kinetic energy backscatter (SKEB)
- Stochastic parameter perturbations (SPP)

Ensemble update: Traditional EPS

Control	00Z			06Z	
mbr001	Ctl+Pa			Ctl+Pa	
mbr002	Ctl-P _a			Ctl-P _a	
mbr003	Ctl+Pb			Ctl+Pb	
mbr004	Ctl-P _b			Ctl-P _b	
mbr005	Ctl+P _c			Ctl+P _c	
mbr006	Ctl-P _c			Ctl-P _c	

Rapid update EPS

Control	00Z	01Z	02Z	03Z	04Z	05Z	06Z	07Z	08Z
mbr001	Ctl+Pa						Ctl+Pa		
mbr002	Ctl-Pa						Ctl-Pa		
mbr003		Ctl+Pb						Ctl+Pb	
mbr004		Ctl-P _b						Ctl-P _b	
mbr005			Ctl+P _c						Ctl+P _c
mbr006			Ctl-P _c						Ctl-P _c
				Ctl+P _d					
				Ctl-P _d					
					Ctl+Pe				

Hourly control analyses (traditional)

Cycling with hourly 3DVAR with observation data window of +/- 30 min

First guess produced from hourly cycling

Drawback:

- · short observation data cutoff;
- spin-up effect;
- · logistic difficulty with timely delivery

Hourly control analyses (COMEPS)

Hourly data assimilation of 3-hourly windowed 3DVAR in **overlapping time windows**

Benefit:

- Use of more observation data
- Varying setup in both use of observations and assimilation algorithm
- No problem of using the same observations repeatedly be consecutive analyses
- · Easier to catch up in case of delays

Properties of an ideal ensemble prediction system

- All ensemble members equally likely and
- Statistically indistinguishable from observations
- Ensemble spread = forecast error
- Forecast probabilities = observed frequencies (reliability)

Verification, spread/error, T2m

Verification, spread/error, 10m wind speed

Verification, spread/error, precipitation

Verification, spread/error, MSLP

Verification, multimodel spread/error

Verification, Continuous Rank Probability Score, T2m

Verification, Continuous Rank Probability Score, 10m wind speed

Verification, Continuous Rank Probability Score, precipitation

Verification, multimodel CRPS

Verification, high wind speeds (>10 m/s)

Snowfall 23 Feb 2017

Snowfall 23 Feb 2017 COMEPS

2017022315+006h: Prob(Snow>5mm/6h) Valid on Thursday 23 Feb 21:00 UTC

Snowfall median

Snowfall 90th percentile

Snowfall 10th percentile

Vind, Vindstød,

thor compute node usage

Outstanding issues

- Presentation in NinJo
- Use on dmi.dk
- Run interesting cloud burst cases
- Study different types of initial and lateral boundary condition perturbations
- Surface perturbations (SRNWP focus area)
- Verification of ensemble forecasts of high-impact weather

Concluding remarks

- COMEPS runs in real-time, see forecasts on <u>http://varulven.dmi.dk/~hf/vejr/COMEPS</u>
- Meteorological performance is promising
- Formal operationalization is expected this spring
- Present HIRLAM 5km EPS will continue over the summer